3.90 \(\int \frac {1+i \cot (c+d x)}{\sqrt {a+b \cot (c+d x)}} \, dx\)

Optimal. Leaf size=45 \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \cot (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}} \]

[Out]

2*I*arctanh((a+b*cot(d*x+c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3537, 63, 208} \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \cot (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + I*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]],x]

[Out]

((2*I)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {1+i \cot (c+d x)}{\sqrt {a+b \cot (c+d x)}} \, dx &=-\frac {i \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \cot (c+d x)\right )}{d}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \cot (c+d x)}\right )}{b d}\\ &=\frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \cot (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 45, normalized size = 1.00 \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \cot (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + I*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]],x]

[Out]

((2*I)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d)

________________________________________________________________________________________

fricas [B]  time = 0.71, size = 159, normalized size = 3.53 \[ -\frac {1}{2} \, \sqrt {-\frac {4 i}{{\left (i \, a + b\right )} d^{2}}} \log \left (\frac {1}{2} \, {\left (i \, a + b\right )} d \sqrt {-\frac {4 i}{{\left (i \, a + b\right )} d^{2}}} + \sqrt {\frac {{\left (a + i \, b\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - a + i \, b}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right ) + \frac {1}{2} \, \sqrt {-\frac {4 i}{{\left (i \, a + b\right )} d^{2}}} \log \left (\frac {1}{2} \, {\left (-i \, a - b\right )} d \sqrt {-\frac {4 i}{{\left (i \, a + b\right )} d^{2}}} + \sqrt {\frac {{\left (a + i \, b\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - a + i \, b}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(-4*I/((I*a + b)*d^2))*log(1/2*(I*a + b)*d*sqrt(-4*I/((I*a + b)*d^2)) + sqrt(((a + I*b)*e^(2*I*d*x +
2*I*c) - a + I*b)/(e^(2*I*d*x + 2*I*c) - 1))) + 1/2*sqrt(-4*I/((I*a + b)*d^2))*log(1/2*(-I*a - b)*d*sqrt(-4*I/
((I*a + b)*d^2)) + sqrt(((a + I*b)*e^(2*I*d*x + 2*I*c) - a + I*b)/(e^(2*I*d*x + 2*I*c) - 1)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {i \, \cot \left (d x + c\right ) + 1}{\sqrt {b \cot \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((I*cot(d*x + c) + 1)/sqrt(b*cot(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.46, size = 1622, normalized size = 36.04 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+I*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x)

[Out]

I/d/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/
2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/2*I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^
(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))-1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)*ln(b*
cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*b-I/d/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/2*I/
d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^
(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*b^2-1/d/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot
(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*b-I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/
2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2
)^(1/2))*a^2-I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))
^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*a^3-I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^
2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-
a-(a^2+b^2)^(1/2))*a*b^2+1/2*I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+
c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*a+1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/((a^2+b^2)^(1/2
)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*a*b+1/2/d
/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*a^2*b+1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)
/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^
(1/2))*b^3+I/d/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)
-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*b^2+1/d/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1/
2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a
*b+1/d/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*
a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2*b+1/d/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a
+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^
2+b^2)^(1/2)-2*a)^(1/2))*b^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {i \, \cot \left (d x + c\right ) + 1}{\sqrt {b \cot \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((I*cot(d*x + c) + 1)/sqrt(b*cot(d*x + c) + a), x)

________________________________________________________________________________________

mupad [B]  time = 2.54, size = 1410, normalized size = 31.33 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cot(c + d*x)*1i + 1)/(a + b*cot(c + d*x))^(1/2),x)

[Out]

(log(d*(-1/(d^2*(a - b*1i)))^(1/2)*(a + b*cot(c + d*x))^(1/2) + 1i)*(-1/(a*d^2 - b*d^2*1i))^(1/2))/2 - log(d*(
-1/(d^2*(a - b*1i)))^(1/2)*(a + b*cot(c + d*x))^(1/2)*1i + 1)*(-1/(4*(a*d^2 - b*d^2*1i)))^(1/2) + (log(16*b^3*
d*(-1/(d^2*(a - b*1i)))^(1/2) - 16*b^2*(a + b*cot(c + d*x))^(1/2) + (16*a*b^2*(a + b*cot(c + d*x))^(1/2))/(a -
 b*1i))*(-1/(a*d^2 - b*d^2*1i))^(1/2))/2 - log(16*b^2*(a + b*cot(c + d*x))^(1/2) + 16*b^3*d*(-1/(d^2*(a - b*1i
)))^(1/2) - (16*a*b^2*(a + b*cot(c + d*x))^(1/2))/(a - b*1i))*(-1/(4*(a*d^2 - b*d^2*1i)))^(1/2) - 2*atanh((32*
b^2*(a + b*cot(c + d*x))^(1/2)*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2))/((b^4*d^2*6
4i)/(4*a^2*d^3 + 4*b^2*d^3) - (64*a*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) + (a*b^3*(a + b*cot(c + d*x))^(1/2)*((b*
1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*128i)/((b^6*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) +
 (a^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a*b^5*d^2)/(4*a
^2*d^3 + 4*b^2*d^3)) - (128*a^2*b^2*(a + b*cot(c + d*x))^(1/2)*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2
+ 4*b^2*d^2))^(1/2))/((b^6*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) + (a^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) - (2
56*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)))*(-(a - b*1i)/(4*a^2*d^2 +
4*b^2*d^2))^(1/2) - 2*atanh((32*b^2*(a + b*cot(c + d*x))^(1/2)*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2
+ 4*b^2*d^2))^(1/2))/((a^2*b^2*d^2*64i)/(4*a^2*d^3 + 4*b^2*d^3) - (b^2*16i)/d + (64*a*b^3*d^2)/(4*a^2*d^3 + 4*
b^2*d^3)) - (128*a^2*b^2*(a + b*cot(c + d*x))^(1/2)*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2
))^(1/2))/((a^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) - (a^2*b^2*64i)/d - (b^4*64i)/d + (256*a^3*b^3*d^2)/(4*a
^2*d^3 + 4*b^2*d^3) + (a^4*b^2*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) + (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) +
(a*b^3*(a + b*cot(c + d*x))^(1/2)*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*128i)/((a
^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) - (a^2*b^2*64i)/d - (b^4*64i)/d + (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^
2*d^3) + (a^4*b^2*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) + (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)))*(-(a - b*1i)/(
4*a^2*d^2 + 4*b^2*d^2))^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ i \left (\int \left (- \frac {i}{\sqrt {a + b \cot {\left (c + d x \right )}}}\right )\, dx + \int \frac {\cot {\left (c + d x \right )}}{\sqrt {a + b \cot {\left (c + d x \right )}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*cot(d*x+c))/(a+b*cot(d*x+c))**(1/2),x)

[Out]

I*(Integral(-I/sqrt(a + b*cot(c + d*x)), x) + Integral(cot(c + d*x)/sqrt(a + b*cot(c + d*x)), x))

________________________________________________________________________________________